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Abstract

In this paper, we introduce the concept of pseudo-continuous semicopula. We show its relationship with continuity
in the second variable and provide a characterization of all semicopulas S such that the smallest semicopula-based
universal integral is S-homogeneous. This completely solves Open problem 2.29 proposed by J. Borzová-Molnárová et
al. in the paper [2].
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1 Introduction

It is well known that in general, Sugeno integral is not linear and in particular it is linear only for small classes of
measures [5]. However, in [2] J. Borzová-Molnárová et al. proved that Sugeno integral with respect to a maxitive
measure is idempotent linear from Theorem 2.26 in [2]. Furthermore, they also presented a characterization of two
semicopula-based integrals as follows:
Proposition 2.24 in [2] says that the smallest semicopula-based universal integral with respect to S is Π-homogeneous
if and only if S = Π.
Proposition 2.25 in [2] states that the smallest semicopula-based universal integral with respect to S is M-homogeneous
if and only if S = M.
These results motivated the authors to formulate Open problem 2.29 and they also conjectured that the class of
semicopulas solving the open problem will only contain two semicopulas M and Π.

Next, in [1] M. Boczek and M. Kaluszka showed that this conjecture is false, that is, any associative semicopula
with continuous selections which satisfy some mild conditions satisfies Open problem 2.29. Inspired by the above,
we study another approach which explicitly specifies all solutions of the problem. This approach is based on a new
concept which is called ”pseudo-continuity” of a semicopula. From the above with the obtained result of Theorem 2.1
in [1], we incidentally discovered one more interesting result, which is the equivalence between the two concepts the
pseudo-continuity and continuity in the second variable of a semicopula S that seem to be completely different from
each other. By applying this equivalence we deduce another characterization of a semicopula S satisfying Open problem
2.29 in [2]. This characterization is an improvement of Theorem 2.1 and 2.2 in [1].

The layout of our work is organized as follows: In Section 2, we recall the background of the smallest
semicopula-based universal integral and the related results leading to the open problem we solve. In Section 3, a new
approach solving the problem is presented. Finally, a conclusion and the appendix are given in Section 4 and 5.
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2 Preliminaries

In this section, we recall some necessary concepts and present several results of the smallest semicopula-based universal
integral leading to Open problem 2.29 in [2].

Let (X,Σ) be a measurable space, where Σ is a σ-algebra of subsets of a nonempty set X.

Definition 2.1. [9] Let µ : Σ → [0,∞] be a non-negative, extended real-valued set function. We say that µ is a
monotone measure if it satisfies
(1) µ (∅) = 0;
(2) A,B ∈ Σ and A ⊆ B imply µ (A) 6 µ (B) (monotonicity).
Then the triplet (X,Σ, µ) is called a monotone measure space.

For f : X → [0,∞], we denote by fα = {x ∈ X| f (x) > α} the α-level set of f for α > 0.

Definition 2.2. [4] Let S denote the class of all measurable spaces (X,Σ) .

1) We denote by F
[0,a]
(X,Σ) the set of all Σ-measurable functions f : X → [0, a] for some a ∈ (0,∞]. In the case a = ∞,

we denote by F(X,Σ) := F
[0,∞]
(X,Σ).

2) For each b ∈ (0,∞), we denote by M b
(X,Σ) the set of all monotone measures satisfying µ (X) = b.

Definition 2.3. A binary operation S : [0, 1]× [0, 1] → [0, 1] is a semicopula if it satisfies

1. S is nondecreasing, i.e., S (a, b) 6 S (c, d) for all a, b, c, d ∈ [0, 1] with a 6 c and b 6 d.

2. S (1, x) = S (x, 1) = x for all x ∈ [0, 1].

Moreover, we say that a semicopula S is associative if S (S (x, y) , z) = S (x,S (y, z)) for all x, y, z ∈ [0, 1].

Example 2.4. The following operations are semicopulas:

M (x, y) = x ∧ y,

Π(x, y) = x · y,
W (x, y) = (x+ y − 1) ∨ 0,

D (x, y) =

{
x ∧ y, if x ∨ y = 1,

0, otherwise,

Fs (x, y) = logs

(
1 +

(sx − 1) · (sy − 1)

s− 1

)
, where s ∈ (0,∞)/{1},

FP (x, y) =

{
x ∧ y, if x+ y > 1,

0, otherwise,

∆1 (x, y) =

{
0, if x = y = 0,

x·y
x+y−x·y , otherwise,

∆2 (x, y) =
x · y

2− (x+ y − x · y)
,

∆3 (x, y) = x · y · (x ∨ y) .

Remark 2.5. Let S be a semicopula. Then the following assertions hold:

1. S (x, y) 6 x ∧ y for all x, y ∈ [0, 1].

2. S (x, 0) = S (0, x) = 0 for all x ∈ [0, 1].

3. If S (x, x) = x for all x ∈ (0, 1) then S = M.

All the semicopulas from Example 2.4 are associative except ∆3.

Throughout this paper, the main object of our interest is the class of the smallest semicopula-based universal
integrals with respect to a semicopula S given by:

IS (µ, f) = sup
0<α

S (α, µ (fα)) ,
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where (X,Σ) ∈ S and (m, f) ∈ M 1
(X,Σ) × F(X,Σ).

Note that:
• This integral is also called a S-semicopula integral or a seminormed fuzzy integral (see in [3, 1, 6]).
• In particular, for S = M we recover the original definition of the Sugeno integral (see in [8]). For S = Π the integral
IΠ is the Shilkret integral (see in [7]).
• Also, for some A ∈ Σ we get

IS,A (µ, f) := IS (µ, f · χA) = sup
0<α

S (α, µ ((f · χA)α)) = sup
0<α

S (α, µ (A ∩ fα)) .

The smallest semicopula-based universal integral can be represented in another form as follows:

Theorem 2.6. (Representation theorem in [2]) Let S be a semicopula. Then for all (X,Σ) ∈ S and (m, f) ∈
M 1

(X,Σ) × F
[0,1]
(X,Σ) we have

IS (µ, f) = sup
∅≠A∈Σ

S

(
inf
x∈A

f (x) , µ (A)

)
.

Definition 2.7. Let S be a semicopula and ⊗ : [0, 1] × [0, 1] → [0, 1] be a binary operation. We say that the smallest
semicopula-based universal integral with respect to S is ⊗-homogeneous if it satisfies IS (µ, k ⊗ f) = k⊗ IS (µ, f) for any

constant k ∈ [0, 1] , (X,Σ) ∈ S and (µ, f) ∈ M 1
(X,Σ) × F

[0,1]
(X,Σ).

For the homogeneity, we obtain the characterizations of two semicopulas Π and M given by:

Proposition 2.8. (Proposition 2.24 in [2]) The smallest semicopula-based universal integral with respect to S is Π-
homogeneous if and only if S = Π.

Proposition 2.9. (Proposition 2.25 in [2]) The smallest semicopula-based universal integral with respect to S is M-
homogeneous if and only if S = M.

From the result of Proposition 2.8 and 2.9 the authors in [2] proposed the following Open problem:
”Characterize the class of semicopulas S for which the property IS (µ,S (α, f)) = S (α, IS (µ, f)) holds for all α ∈

[0, 1] , (X,Σ) ∈ S and (µ, f) ∈ M 1
(X,Σ) × F

[0,1]
(X,Σ).”

There was a conjecture that semicopulas Π and M are the only solutions of the open problem. However, in the
paper [1], M. Boczek and M. Kaluszka pointed out a necessary condition for a solution of this open problem given by
the following theorem:

Theorem 2.10. (Theorem 2.1 in [1]) If a semicopula S satisfies the open problem then the semicopula S is associative
and continuous in the second variable.

Furthermore, they also stated a sufficient condition for a solution of the open problem.

Theorem 2.11. (Theorem 2.2 in [1]) If a semicopula S is associative and continuous in the second variable and
x 7→ S (a, x) is increasing on some countable number of intervals for every a ∈ (0, 1) then S satisfies the open problem.

Motivated by the above results, we introduce another approach to solve the open problem without using Theorem
2.10 and 2.11 which is presented in Section 3.

3 Another approach for solving the open problem

To present a full characterization of semicopulas solving the open problem, first of all, we need to introduce some new
concepts and related results.

Definition 3.1. We say that a semicopula S is continuous in the second variable if the function [0, 1] ∋ x 7→ S (a, x) is
continuous for every fixed a ∈ [0, 1].

Analogous definitions for the left and right continuity in the second variable is omitted.

Remark 3.2. It is easy to see that the class of all semicopulas which are continuous in the second variable is very
broad. It includes the following semicopulas: M, Π, W, Fs, ∆1, ∆2, ∆3.
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Definition 3.3. We say that a semicopula S is pseudo-continuous if it has the following properties

1) inf
x∈A

S (k, f (x)) = S

(
k, inf

x∈A
f (x)

)
for all k ∈ [0, 1] , (X,Σ) ∈ S , A ∈ Σ and f ∈ F

[0,1]
(X,Σ).

2) sup
A∈Σ

S

(
k, S

(
inf
x∈A

f (x) , µ (A)

))
= S

(
k, sup

A∈Σ

{
S

(
inf
x∈A

f (x) , µ (A)

)})
for all k ∈ [0, 1], (X,Σ) ∈ S and (µ, f) ∈

M 1
(X,Σ) × F

[0,1]
(X,Σ).

First, we study the following two negative examples.

Example 3.4. Semicopula FP is not pseudo-continuous. Indeed, by taking X = [0, 1], f (x) = x for every x ∈ X,
k = 1

2 , Σ = P (X) and A = (k, 1]. It is easy to see that

inf
x∈A

FP (k, f (x)) = inf
x∈A

{k ∧ f (x)} = k =
1

2
,

and

FP

(
k, inf

x∈A
f (x)

)
= FP (k, k) = FP

(
1

2
,
1

2

)
= 0.

So, the property 1 of Definition 3.3 doesn’t hold. This means that FP is not pseudo-continuous.

Example 3.5. Semicopula D is not pseudo-continuous. Indeed, take X = [0, 1), f (x) = x for every x ∈ X, k ∈ (0, 1)
and Σ = P (X). Put: µ : Σ → R+ defined by µ (E) = 1 for all E ∈ Σ \ {∅} and µ (∅) = 0. Then µ is a monotone

measure on (X,Σ) and D

(
inf
x∈A

f (x) , µ (A)

)
= inf

x∈A
f (x) < 1 for any A ∈ Σ \ {∅}. This implies that

sup
A∈Σ

D

(
inf
x∈A

f (x) , µ (A)

)
> sup

n∈N
D

(
inf

x∈An

f (x) , 1

)
= sup

n∈N
inf

x∈An

f (x) = sup
n∈N

{
1− 1

n

}
= 1,

where An =
[
1− 1

n , 1
)
. We deduce that

D

(
k, sup

A∈Σ
D

(
inf
x∈A

f (x) , µ (A)

))
= D (k, 1) = k.

On the other hand,

sup
A∈Σ

D

(
k,D

(
inf
x∈A

f (x) , µ (A)

))
= sup

∅̸=A∈Σ

D

(
k, inf

x∈A
f (x)

)
= 0.

So, the property 2 of Definition 3.3 doesn’t hold. This means that D is not pseudo-continuous.

Now we present a full solution of the open problem by another approach without using the results of Theorem 2.10
and 2.11.

Theorem 3.6. Let S be a semicopula. Then the following conditions are equivalent:

1. The property: IS (µ,S (α, f)) = S (α, IS (µ, f)) holds for every α ∈ [0, 1], every (X,Σ) ∈ S and every (µ, f) ∈
M 1

(X,Σ) × F
[0,1]
(X,Σ);

2. S is associative and pseudo-continuous.

Proof. 2 ⇒ 1: By applying Theorem 2.6 for IS and Definition 3.3, one has

IS (µ, S (k, f)) = sup
∅̸=A∈Σ

S

(
inf
x∈A

S (k, f (x)) , µ (A)

)
= sup

∅≠A∈Σ

S

(
S

(
k, inf

x∈A
f (x)

)
, µ (A)

)

= sup
∅̸=A∈Σ

S

(
k, S

(
inf
x∈A

f (x) , µ (A)

))
= S

(
k, sup

∅≠A∈Σ

S

(
inf
x∈A

f (x) , µ (A)

))
= S (k, IS (µ, f)) .

1 ⇒ 2: There are three steps:
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Step 1. Associativity of S: Consider any k, a, b ∈ [0, 1], µ be the Lebesgue measure and f (x) = a · χ[0,b] (x) for
x ∈ X = [0, 1]. Then

IS (µ, f) = sup
0<α6a

S (α, µ (fα)) ∨ sup
a<α61

S (α, µ (fα)) = sup
0<α6a

S (α, b) = S (a, b) .

On the other hand, we have

IS (µ,S (k, f)) = IS
(
µ,S

(
k, a · χ[0,b]

))
= IS

(
µ,S (k, a) · χ[0,b]

)
= S (S (k, a) , b) .

Since S is a solution of the open problem, it follows that S (S (k, a) , b) = S (k, S (a, b)). So, S is associative.
Step 2. The property 1 of Definition 3.3: For any (X,Σ) ∈ S , A ∈ Σ, put: mA (E) = 0 if E ̸⊇ A and mA (E) = 1

if E ⊇ A for any E ∈ Σ. Then m is a monotone measure on (X,Σ). Therefore, for any k ∈ [0, 1] and f ∈ F
[0,1]
(X,Σ) it

follows from the assumption that

IS (mA, S (k, g)) = S (k, IS (mA, g)) , where g = f · χA.

By applying Theorem 2.6, we get that

IS,A (mA, f) = IS (mA, g) = sup
∅≠E∈Σ

S

(
inf
x∈E

g (x) ,mA (E)

)
= sup

A⊆E∈Σ
S

(
inf
x∈E

f (x) · χA (x) , 1

)
= inf

x∈A
f (x) .

On the other hand, from S (k, g (x)) = S (k, f (x)) · χA (x) and applying the above result it follows that

IS (mA,S (k, g)) = inf
x∈A

S (k, f (x)) .

So,

inf
x∈A

S (k, f (x)) = S

(
k, inf

x∈A
f (x)

)
.

Step 3. The property 2 of Definition 3.3: For all k ∈ [0, 1], (X,Σ) ∈ S and (µ, f) ∈ M 1
(X,Σ) ×F

[0,1]
(X,Σ), by applying

the obtained results of steps 1, 2 and Representation theorem, we get that

IS (µ,S (k, f)) = sup
∅≠A∈Σ

S

(
inf
x∈A

S (k, f (x)) , µ (A)

)
= sup

A∈Σ
S

(
S

(
k, inf

x∈A
f (x)

)
, µ (A)

)
= sup

A∈Σ
S

(
k, S

(
inf
x∈A

f (x) , µ (A)

))
.

On the other hand, it follows from the assumption and Representation theorem that

IS (µ,S (k, f)) = S (k, IS (µ, f)) = S

(
k, sup

A∈Σ
S

(
inf
x∈A

f (x) , µ (A)

))
.

By comparing the above results, we deduce that the property 2 of Definition 3.3 holds. The proof of Theorem 3.6 is
completed.

A surprising and interesting result is given by the following theorem.

Theorem 3.7. Let S be a semicopula. Then

S is pseudo-continuous if and only if S is continuous in the second variable.

Proof. The proof is given in the appendix.
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Remark 3.8. 1) From Remark 2.5, 3.2, Theorem 3.6 and 3.7, we can conclude that the semicopulas M, Π, W, Fs, ∆1,
∆2 are solutions of the open problem.
2) From Remark 2.5, Example 3.4, 3.5 and Theorem 3.6, we can conclude that the semicopulas D, FP and ∆3 are not
solutions of the open problem.

Example 3.9. Let X = [0, 1], Σ = P (X) and µ : Σ → R+ defined by µ (E) = 1 if E ̸= ∅ and µ (∅) = 0. Consider
k ∈ (0, 1) and f (x) = x on X. Then

(D (k, f) (x)) = D (k, f (x)) = 0 for all x ∈ X,

and
ID (µ, f) = sup

α∈(0,1]

D (α, µ (fα)) = sup
α∈(0,1]

α = 1.

These imply that
ID (µ,D (k, f)) = 0 and D (k, ID (µ, f)) = k > 0

showing that ID is not D-homogeneous, i.e, D is not a solution of the open problem.

Example 3.10. Consider X = [0, 1] and λ be the Lebesgue measure on B (X). For the function f (x) = x on X, we
have IW (λ, f) = 0, therefore, W (k, IW (λ, f)) = 0 for every k ∈ [0, 1]. On the other hand, it is not difficult to check
that (W (k, f))α = [1 + α− k, 1] for every α ∈ (0, 1]. This implies that λ ((W (k, f))α) = k − α. This gives

IW (λ,W (k, f)) = sup
0<α6k

W (α, k − α) = sup
0<α6k

{(k − 1) ∨ 0} = 0.

This result is fully compatible with the assertion of Remark 3.8. Therefore, there is some confusion in Example 2.28
presented in the paper [2].

From Theorems 3.6 and 3.7, we obtain the following result which improves the results of Theorems 2.10 and 2.11.

Theorem 3.11. A semicopula is a solution of the open problem if and only if it is associative and continuous in the
second variable.

4 Conclusion

Another approach finding out all solutions of the open problem without using Theorem 2.10 and 2.11 is proposed.
Further, a full characterization of semicopulas S satisfying the property IS (µ,S (α, f)) = S (α, IS (µ, f)) for every

α ∈ [0, 1], (X,Σ) ∈ S and (µ, f) ∈ M 1
(X,Σ) × F

[0,1]
(X,Σ) is stated in Theorem 3.11. This result refines Theorem 2.10 and

2.11. Finally, we have studied an extremely interesting property that is the equivalence between the pseudo-continuity
and the continuity in the second variable of a semicopula S.

5 Appendix

This section is devoted to proving Theorem 3.7. First of all, we need the following auxiliary results.

Lemma 5.1. Let S be a semicopula. Then
S is right-continuous in the second variable if and only if

inf
x∈A

S (k, f (x)) = S

(
k, inf

x∈A
f (x)

)
,

for all k ∈ [0, 1], for all nonempty set A and f : A → [0, 1].

Proof. 1) The forward part: It follows from monotonicity of S that

S

(
k, inf

x∈A
f (x)

)
6 inf

x∈A
S (k, f (x)) .

On the other hand, for every ε > 0 there exists xε ∈ A such that

S

(
k,

(
inf
x∈A

f (x)

)
+ ε

)
> S (k, f (xε)) > inf

x∈A
S (k, f (x)) .
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By applying the right continuity of S in the second variable, we get that

S

(
k, inf

x∈A
f (x)

)
> inf

x∈A
S (k, f (x)) .

Therefore, the proof of the forward part is finished.
2) The reserve part: For any b ∈ [0, 1] fixed. Consider a nonincreasing sequence {bn} ⊂ [0, 1] such that bn ↘ b, put

f : A ≡ [0, 1] → [0, 1] defined by f (x) = bn if x ∈
[

1
n+1 ,

1
n

)
for n ∈ N, and f (x) = 1 if x ∈ {0, 1}. Then

inf
x∈A

f (x) = b and inf
x∈A

S (k, f (x)) = lim
n→∞

S (k, bn) for each k ∈ [0, 1] .

In view of the assumption of the reverse part, we get

lim
n→∞

S (k, bn) = S (k, b) .

The proof is finished.

Lemma 5.2. Let S be a semicopula. Then S is left-continuous in the second variable if and only if

sup
x∈A

S (k, f (x)) = S

(
k, sup

x∈A
f (x)

)
,

for all k ∈ [0, 1] , for all nonempty set A and f : A → [0, 1].

Proof. The proof of Lemma 5.2 is a dual of Lemma 5.1. Therefore, it is omitted here.

Lemma 5.3. Let S be a semicopula. Then
S is left-continuous in the second variable if and only if S satisfies the property 2 of Definition 3.3.

Proof. 1) The forward part: It is a dual of the forward part in Lemma 5.1. So, it is omitted here.
2) The reverse part: For any nonempty set A and k ∈ [0, 1] fixed. Consider σ-algebra Σ = P (A), µ : Σ → [0, 1] defined
by µ (E) = 1 if E ∈ P (A) \ {∅} and µ (E) = 0 if E = ∅. In view of the property 2 of Definition 3.3, one has

sup
∅≠E⊂A

S

(
k, S

(
inf
x∈E

f (x) , µ (E)

))
= S

(
k, sup

∅≠E⊂A

{
S

(
inf
x∈E

f (x) , µ (E)

)})
.

This implies that

sup
∅≠E⊂A

S

(
k, inf

x∈E
f (x)

)
= S

(
k, sup

∅̸=E⊂A

inf
x∈E

f (x)

)
. (1)

Now, we claim that
sup

∅≠E⊂A

inf f (E) = sup
x∈A

f (x) , (2)

and
sup

∅≠E⊂A

S (k, inf f (E)) = sup
x∈A

S (k, f (x)) . (3)

Indeed, it is obvious that
sup
x∈A

f (x) = sup inf
x∈A

f ({x}) 6 sup
∅̸=E⊂A

inf f (E) .

On the other hand, there exists xE ∈ E such that

inf f (E) 6 f (xE) 6 sup
x∈A

f (x) .

Therefore,
sup

∅≠E⊂A

inf f (E) 6 sup
x∈A

f (x) .

So, the claim (2) holds. Next, by the same technique, the claim (3) holds, too. Combining the results (1)-(3), we obtain
that

sup
x∈A

S (k, f (x)) = S

(
k, sup

x∈A
f (x)

)
.

for all k ∈ [0, 1], for all nonempty set A and f : A → [0, 1].
By applying Lemma 5.2, we conclude that S is left-continuous in the second variable.
The proof is finished.
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Now, we come back to proving Theorem 3.7. The conclusion of Theorem 3.7 immediately follows from Definition
3.3 and applying Lemmas 5.1 and 5.3.
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[2] J. Borzová-Molnárová, L. Halčinová, O. Hutńık, The smallest semicopula-based universal integrals I: Properties and
characterizations, Fuzzy Sets and Systems, 271 (2015), 1-17.

[3] J. Caballero, K. Sadarangani, A Markov-type inequality for seminormed fuzzy integrals, Applied Mathematics and
Computation, 219 (2013), 10746-10752.

[4] E. P. Klement, R. Mesiar, E. Pap, A universal integral as common frame for choquet and sugeno integral, IEEE
Transactions on Fuzzy Systems, 18 (2010), 178-187.

[5] E. P. Klement, D. Ralescu, Nonlinearity of the fuzzy integral, Fuzzy Sets and Systems, 11 (1983), 309-315.

[6] Y. Ouyang, R. Mesiar, On the Chebyshev type inequality for seminormed fuzzy integral, Applied Mathematics Letters,
22 (2009), 1810-1815.

[7] N. Shilkret, Maxitive measure and integration, Fuzzy Sets and Systems, 74 (1971), 109-116.

[8] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, (1974), 134
pages.

[9] Z. Wang, G. Klir, Generalized measure theory, Springer-Verlag US, 2009, 398 pages.


	 Introduction
	Preliminaries
	Another approach for solving the open problem
	Conclusion
	Appendix

